PENGERTIAN SKALAR DAN VEKTOR BESERTA CONTOH SOALNYA

 

BESARAN VEKTOR

Besaran vektor adalah besaran yang memiliki besar (nilai) dan arah.

Karena memiliki arah, maka besaran ini bisa digambarkan dalam bentuk garis dengan anak panah diujungnya. Tanda anak panah inilah yang menunjukkan arah gerak besaran tersebut.

CONTOH BESARAN VEKTOR

Banyak sekali contoh besaran vektor di sekitar kita, misalnya Gaya Tarik, Gaya Tekan, Gaya Punter, Momen, Kecepatan, Momentum, Berat, dan lain sebagainya.

Contoh real dari gaya tekan adalah ketika kita mendorong sebuah meja. Karena pengaruh gaya dorong kita, maka meja akan mengalami tekanan.

PERSYARATAN BESARAN VEKTOR

Berdasarkan sifat-sifat besaran vektor pada definisi besaran vektor diatas maka persyaratan dikatakan sebagai besaran vektor adalah:

1. Memiliki Arah

Besaran vektor memiliki arah yang tertentu menurut arah geraknya. Arah dari besaran vektor tidak hanya berlaku untuk arah yang lurus saja namun juga berlaku untuk arah gerak yang melengkung. Misalnya gerak peluru yang dilempar ke atas dengan arah sudut 45 derajad dari arah horizontal.

2. Nilainya Bisa Ditentukan

Setiap besaran vektor memiliki nilai atau besar tertentu. Besar atau nilai dari besaran vektor tersebut dapat diukur dengan menggunakan alat ukur yang sesuai.

Sebagai contoh adalah Gaya – baik gaya tarik maupun tekan. Dengan menggunakan alat ukur gaya maka gaya tarik atau gaya tekan yang dialami oleh benda yang bergerak akan terbaca di alat ukur tersebut. Jika penunjukan alat ukur gaya adalah 50 Newton, artinya 50 adalah besar atau nilai dari gaya yang Anda ukur. Adapun Newton (N) adalah satuannya.

3. Memiliki Titik Tangkap Gaya

Titik tangkap gaya merupakan sebuah titik dimana dimulainya pergerakan gaya. Dengan kata lain, titik tangkap gaya adalah titik nol sebelum benda mengalami pergeseran.

BESARAN SKALAR

Berbeda dengan besaran scalar. Besaran ini tidak memiliki arah tapis ama-sama memiliki besar atau nilai dari besaran tersebut.

CONTOH BESARAN SKALAR

Sebagai contoh besaran yang tidak memiliki arah adalah massa, waktu, temperature atau suhu, densitas, kelembaban, koefisien thermal, dan lain sebagainya.

VEKTOR RUANG

Sebuah Titik A menempati sebuah ruang XYZ seperti pada gambar. Agar bisa menunjukkan posisi Titik A dengan tepat kepada orang lain maka letak posisi Titik A bisa dituliskan dalam bentuk vector sebagai berikut:

Besaran vektor skalar
Vektor Ruang 3 D

Vektor Ax = Axi yang besarnya –> Ax = A cos α

Vektor Ay = Ayj yang besarnya –> Ay = A cos β

Vektor A= Azk yang besarnya –> Az = A cos γ

Sehingga Vektor A dalam ruang = Ax + Ay + Az = Axi + Ayj + Azk

Besarnya Nilai A = √ (Ax2 + Ay2 + Az2)

Sedangkan arah vektor A terhadap sumbu x, y dan z positif adalah:

Cos α = Ax / A

Cos β = A/ A

Cos γ = A/ A

METODE PENYELESAIAN VEKTOR

Cara menyelesaikan besaran vektor dapat dilakukan dengan 3 cara, yaitu:

1. Metode Grafis

Penyelesaian vektor dengan metode grafis dapat Anda lakukan dengan cara menggambar vektor tersebut secara cermat. Artinya baik titik tangkap, Panjang dan arah vektor harus jelas dan terukur.

Hasil pengukuran vektor dengan car aini memiliki banyak kelemahan. Salah satunya yaitu sulit untuk mendapatkan hasil yang sebenarnya. Karena untuk mendapatkan hasil pengukuran membutuhkan ketelitian dalam penggambaran. Sedikit saja ada pergeseran maka hasil pengukuran menjadi beda.

2. Metode Jajaran Genjang

Dikatakan metode jajaran genjang karena dalam setiap penyelesaiannya, kedua vektor selalu dibuat bentuk jajaran genjang. Dari bentuk jajaran genjang itulah akan dicari resultan (nilai gabungan) dari kedua vektor tersebut.

3. Metode Analisis

Metode analisis ditandai dengan diuraikannya setiap vektor kea rah dua sumbu bidang yang ditempatinya. Misalnya sumbu X dan Y.

Setelah diuraikan kea rah sumbu X dan Y, maka semua vektor yang searah sumbu dijumlahkan semua. Hasilnya adalah penjumlahan vektor yang searah dengan sumbu X dan vektor yang searah sumbu Y.

Langkah terakhir, yaitu dengan meresultankan kedua vektor dari kedua sumbu tersebut yang dijumlahkan.

CONTOH SOAL

1. 

Pembahasan :


  1. Besar gaya Lorentz dari muatan sebesar q yang bergerak di medan magnet B dengan kecepatan v adalah sebesar F=q(v×B). Jika partikel bermuatan 2 mC bergerak di medan B=2i+5j T dengan kecepatan v=5i m/s, maka besar dan arah gaya Lorentznya adalah….
    1. 35k mN
    2. 50k mN
    3. 70k mN
    4. 80k mN
    5. 90k mN

Jawaban: B

Berdasarkan persamaan di gaya lorentz maka

4. 
Pembahasan :

DAFTAR PUSTAKA

https://muh-amin.com/besaran-vektor-dan-skalar-definisi-perbedaan-dan-contoh-pengerjaannya/
https://mathcyber1997.com/soal-dan-pembahasan-vektor-tingkat-sma-sederajat/
https://www.wardayacollege.com/fisika/pengukuran/besaran/besaran-vektor-skalar/

Popular posts from this blog

LATIHAN SOAL VEKTOR MATEMATIKA PEMINATAN